A Proof of the Faber Intersection Number Conjecture
نویسندگان
چکیده
We prove the Faber intersection number conjecture and other more general results by using a recursion formula of n-point functions for intersection numbers on moduli spaces of curves. We also present several conjectural properties of Gromov-Witten invariants generalizing results on intersection numbers.
منابع مشابه
On the Linear Intersection Number of Graphs
The celebrated Erdös, Faber and Lovász Conjecture may be stated as follows: Any linear hypergraph on v points has chromatic index at most v. We will introduce the linear intersection number of a graph, and use this number to give an alternative formulation of the Erdös, Faber, Lovász conjecture. Finally, first results about the linear intersection number will be proved. For example, the definit...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملOn Fulkerson conjecture
If G is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings (a Fulkerson covering) with the property that every edge of G is contained in exactly two of them. A consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (this problem is known as the Fan Raspaud Conjecture). A FR-triple is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008